Thermodynamic and electron transport properties of the argon and argon-hydrogen plasmas have been calculated under the local thermodynamic equilibrium conditions in temperature range of 10 000-40 000 K over the wide range of pressures. Electronic excitation affects strongly these properties especially at high pressures. The inclusion of electronically excited states (EES) in relevant partition function influences the internal contribution to frozen and total specific heat for argon and argon-hydrogen plasma and it has been observed that although the total specific heat of argon plasma is less than that of hydrogen plasma, yet its internal contribution is more. Compensation between different contributions to total specific heat (by including and neglecting EES) occurring in hydrogen plasmas at low pressures has not been observed in argon and argon-hydrogen plasmas. As electron transport properties strongly depend upon the degree of ionization, therefore larger relative errors are found for these properties with and without EES, and in contrast to hydrogen plasma there exist a dominance of electron-atom cross section at low temperatures and EES dominance at intermediate temperatures.