The neuromotor control of the diaphragm muscle (DIAm) involves motor unit recruitment, sustained activity (incrementing and decrementing), and motor unit derecruitment, phases that may be modified to maintain ventilation across conditions. The primary goal of the present study was to investigate the effects of hypercapnia, which increases respiratory rate and tidal volume, on DIAm neuromotor control in awake rats. We recorded DIAm electromyography (EMG) using implanted chronic fine-wire electrodes in nine Sprague-Dawley rats during normocapnia and hypercapnia (7% CO2). The durations of motor unit recruitment/derecruitment were estimated by evaluating stationarity of DIAm EMG activity during normocapnia and hypercapnia; the motor unit recruitment/derecruitment durations were used to evaluate RMS EMG recruitment/derecruitment amplitudes. Overall, hypercapnia reduced the burst duration by ~40% and increased respiratory rate by ~50%. The change in the burst duration was primarily attributable to a 57% decrease in the peak-to-offset duration of the DIAm RMS EMG signal, suggesting a suppression of postinspiratory activity. Although neither the recruitment duration nor the onset-to-peak duration changed with hypercapnia, both the recruitment and peak amplitudes increased by 11% and 23% respectively. Therefore, although hypercapnia increases the number of motor units being recruited and their discharge rates, ventilation is primarily increased by increasing respiratory rate. Additionally, hypercapnia eliminated the decrementing sustained activity phase and consequently increased derecruitment amplitude by 171%. The results of the present study reveal that respiratory rate is increased chiefly by reducing the decrementing (i.e. "postinspiratory") phase of DIAm EMG activity.
Read full abstract