Electromagnetic metasurfaces have been playing exotic roles in the construction of ultracompact and versatile metadevices for wave–matter interactions. So far, multiple metasurfaces cascaded with intercouplings have been intensively investigated for extraordinary wavefront control and broadband spectral regulations. However, most cases face high structural complexity and little attention is paid to cascaded metasurfaces without interlayer couplings. In this paper, we demonstrate one type of terahertz Bragg mirror with ideally high reflectivity and ultra-broad bandwidth by simply resorting to decoupled metasurfaces. Cascaded metasurfaces with decoupled mode control prove practically straightforward for analytical design and easy to fabricate for engineering purpose in our scheme. Essentially, by flexibly tuning the decoupled metasurface mode, the middle Fabry–Perot mode that behaves like a defect mode inside the reflective passband can be eliminated for substantial band expanding. Fundamental analyses and rigorous calculations are performed to confirm the feasibility of our metasurface-based THz Bragg mirror with scalable bandgap. In comparison, our meta-mirror provides superior spectral performance of a larger bandgap and higher in-band reflectivity over that composed by ten layers of alternate dielectrics (Rogers 3003 and 3005). Finally, our analytical methodology and numerical results provide a promising way for the rapid design and fabrication of a Bragg mirror in the optical regime.