AbstractPolymers filled with conducting fibers to prevent electromagnetic interference (EMI) performance have recently received great attention due to the requirements of 3C (computer, communication, and consumer electronics) products. In the present article, the effect of fiber content and processing parameters, including melt temperature, mold temperature, and injection velocity, on the electromagnetic interference shielding effectiveness (SE) in injection molded ABS polymer composites filled with conductive stainless steel fiber (SSF) was investigated. The influence of fiber orientation and distribution resulting from fiber content and molding conditions on EMI performance was also examined. It was found from measured results that fiber content plays a significant role in influencing part EMI SE performance. SE value can reach the highest values of approximately 40 dB and 60 dB at 1000 MHz frequency for fiber content 7 wt % and 14 wt %, respectively, under the best choice of molding conditions. Higher melt and mold temperature would increase shielding effectiveness due to a more uniform and random fiber orientation. However, higher injection velocity leading to highly‐orientated and less uniform distribution of fiber reduces shielding effectiveness. Among all molding parameters, melt temperature affects SE performance most significantly. Its influence slightly decreases as fiber content increases. Injection speed plays a secondary importance in affecting SE values, and its influence increases as fiber content increases. Upon examination of fiber distribution via optical microscope and subsequent image analysis, it was found that the fiber becomes more densely and random distributed toward the last melt‐filled region, whereas fiber exhibits less concentration around the middle way of the flow path. This can be attributed to the combined effects of fountain flow, frozen layer thickness, and gapwise melt front velocity. The results indicate that molding conditions, instead of fiber content alone, are very important on the SE performance for injection molded SSF filled ABS composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1072–1080, 2005
Read full abstract