Rigid solenoid coils have long been indispensable in modern intelligent devices. However, their sparse structure and challenging preparation of flexible coils for soft robots impose limitations. Here, a transformable 3D curved high-density liquid metal coil (HD-LMC) is introduced that surpasses the structural density level of enameled wire. The fabrication technique employed for high-density channels in elastomers is universally applicable. Such HD-LMCs demonstrated excellent performance in pressure, temperature, non-contact distance sensors, and near-field communication. Soft electromagnetic actuators thus achieved significantly improved the electromagnetic force and power density. Moreover, precise control of swinging tail motion enables a bionic pufferfish to swim. Finally, HD-LMC is further utilized to successfully implement a soft rotary robot with integrated sensing and actuation capabilities. This groundbreaking research provides a theoretical and experimental basis for expanding the applications of liquid metal-based multi-dimensional complex flexible electronics and is expected to be widely used in liquid metal-integrated robotic systems.
Read full abstract