AbstractMethanol as a hydrogen carrier provides a practical solution for H2 storage and transport, but traditional reforming faces challenges with low efficiency, CO2 emissions, and the need for specialized infrastructure. In this study, a reliable approach for fabricating low‐cost electrodes is presented by in situ growing high‐entropy phosphide nanoparticles on nickel foam (FeCoNiCuMnP/NF). This cost‐effective design is specifically engineered for alkaline methanol oxidation reactions (MOR), achieving a current density of 10 mA cm−2 at an applied voltage of only 1.32 V, while also demonstrating exceptional selectivity for formate products. Advanced Monte Carlo (ML‐MC) simulations identify copper as the predominant surface element and highlight phosphorus coordination as a key factor in enhancing catalytic activity. The field is advanced with a pioneering hybrid acid/alkali flow electrolyzer system, integrating FeCoNiCuMnP/NF anode and commercial RuIr/Ti cathode to enable indirect hydrogen liberation from methanol. This system requires an electrolytic voltage as low as 0.58 V to achieve a current density of 10 mA cm−2 and remains stable for hydrogen liberation over 300 h of operation. This achievement not only offers a highly efficient alternative to indirectly liberate H2 stored in methanol but also establishes a new benchmark for sustainable and economically viable H2 production.
Read full abstract