ABSTRACT1. The current objective was to assess (1) differences in mucosal transepithelial short-circuit current (Isc) and tissue conductance (GT), (2) the effect of a glucose stimulus and (3) epithelial paracellular permeability in the proximal and distal jejunum of laying hens.2. Proximal and distal jejunal segments used in the Ussing chambers were collected at 9 ± 0.5 and 73 ± 3.4% (SEM) of jejunal length, respectively. The proximal jejunal mucosa showed a small negative Isc (−1.3 µA/cm2), whereas the distal jejunum had a higher Isc (32.9 µA/cm2). Similarly, GT was 2.5-fold greater in the distal compared to the proximal jejunum.3. Increased paracellular permeability in the distal jejunum was displayed as demonstrated by a 5-fold higher mucosal to serosal flux of fluorescein isothiocyanate and horseradish peroxidase, representing molecules of low and high molecular weight, respectively.4. Addition of glucose to the mucosal side (5 mmol/l, final concentration in the chamber) to stimulate an absorptive effect caused 3-fold greater GT in the distal compared to the proximal jejunum.5. In conclusion, the present results supported site-specific electrogenic transport processes for the jejunal mucosa of laying hens. Therefore, precise description of the jejunal site may contribute to an improved comparability of electrophysiological data.
Read full abstract