Diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) and electrodeless conductivity tensor imaging (CTI) are two emerging modalities that can quantify low-frequency tissue anisotropic conductivity properties by assuming similar properties underlie ionic mobility and water diffusion. While both methods have potential applications to estimating neuro-modulation fields or formulating forward models used for electrical source imaging, a direct comparison of the two modalities has not yet been performed in-vitro or in-vivo. Therefore, the aim of this study was to test the equivalence of these two modalities. We scanned a tissue phantom and the head of human subject using DT-MREIT and CTI protocols and reconstructed conductivity tensor and effective low frequency conductivities. We found both gray and white matter conductivities recovered by each technique were equivalent within 0.05 S/m. Both DT-MREIT and CTI require multiple processing steps, and we further assess the effects of each factor on reconstructions and evaluate the extent to which different measurement mechanisms potentially cause discrepancies between the two methods. Finally, we discuss the implications for spectral models of measuring conductivity using these techniques. The study further establishes the credibility of CTI as an electrodeless non-invasive method of measuring low frequency conductivity properties.
Read full abstract