The electrode optimization and rational design are of great significance for the performance enhancement of self-powered electrochromic devices (ECDs). It can be effectively enhanced by developing interfacial properties of electrodes, which can promote the internal ion transport within functional components consisting of an electrode, electrochromic layer, and electrolyte layer and thus obtain performance improvement of fabricated devices. This work aims to construct the electrode of poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS) on different substrates and promote interface performance of the prepared electrodes via inheriting the surface topography of substrates. Besides, the prepared PEDOT:PSS electrodes as a dual-function layer including the electrochromic and electrode layer are employed to assemble the ECDs. It is found that the intrinsic roughness of the paper substrate can facilitate the electrochemical performance of the prepared PEDOT:PSS electrode on it effectively, thereby showing a superior electrochemical surface area and diffusion coefficient as well as a lower charge-transfer resistance of 13.56 Ω. Similarly, for the prepared self-powered ECD on the paper substrate, it also indicates a high light absorption property (0.413), well-defined electrochromic contrast (33.09), fast switching (τc = 4.0 s, τb = 6.8 s), high coloration efficiency (92.275 cm2 C-1), high areal capacity (10.93 mAh m-2) at 0.01 mA cm-2, and lower equivalent series resistance (176.2 Ω) in comparison to parallel ECDs on the PET and glass substrate. Leveraging the intrinsic roughness of the substrate is able to enhance the electrochemical performance of electrodes, which can also provide a new strategy for the construction of high-performance self-powered ECDs.