Bioelectrical signal measurements play a crucial role in clinical diagnosis and continuous health monitoring. Conventional wet electrodes, however, present limitations as they are conductive gel for skin irritation and/or have inflexibility. Here, we developed a cost-effective and user-friendly stretchable dry electrode constructed with a flexible network of Ag/AgCl nanowires embedded in polydimethylsiloxane (PDMS). We compared the performance of the stretched Ag/AgCl nanowire electrode with commonly used commercial wet electrodes to measure electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG) signals. All the signal-to-noise ratios (SNRs) of the as-fabricated or stretched (50% tensile strain) Ag/AgCl nanowire electrodes are higher than that measured by commercial wet electrodes as well as other dry electrodes. The evaluation of ECG signal quality through waveform segmentation, the signal quality index (SQI), and heart rate variability (HRV) reveal that both the as-fabricated and stretched Ag/AgCl nanowire electrode produce high-quality signals similar to those obtained from commercial wet electrodes. The stretchable electrode exhibits high sensitivity and dependability in measuring EMG and EEG data, successfully capturing EMG signals associated with muscle activity and clearly recording α-waves in EEG signals during eye closure. Our stretchable dry electrode shows enhanced comfort, high sensitivity, and convenience for curved surface biosignal monitoring in clinical contexts.
Read full abstract