In this paper, the electrochemical behavior of cysteine is described, using carbon paste electrodes (CPEs) modified with ternary silver-copper sulfide containing intrinsic silver at two pH values (pH 3 and 5). Experiments have revealed that presence of cysteine has a large impact on the electrochemical behavior of modified CPEs. Observed phenomena take place in solution, as well as at the surface of the modified CPEs, and can be applied for electroanalytical purposes. Based on the electrochemical behavior observed in the examined system, differential pulse voltammetry (DPV) was selected as an electroanalytical method for determination of cysteine. The effects of the various parameters on the electroanalytical signal, such as the amount of electroactive material, electroanalytical parameters, pH etc., were investigated using differential pulse voltammograms. The results indicated that electrochemical signal characterized with well-defined cathodic peak at 0.055 V vs. Ag/AgCl (3 M) in acetic buffer solution at pH 5 can be used for indirect electrochemical determination of cysteine. The optimization procedure revealed that the most sensitive and stabile electrode was that containing 5% modifier. The DPV response of the electrode, in the presence of cysteine, showed two different linear concentration ranges of 0.1 to 2.5 μM, and 5.6 to 28 μM. The explanation of the origin of two linear ranges is proposed. The lower concentration range was characterized by remarkable sensitivity of the 11.78 μA μM−1, owing to the chosen indirect method of determination. The calculated limit of detection (LOD), as well as limit of quantification (LOQ) were 0.032 and 0.081 μM, respectively. The influence of interfering agents on the electroanalytical response was examined, and low or no interference on the DPVs was observed. The proposed method was validated and applied for the determination of cysteine in pharmaceutical preparations with satisfactory recoveries in the range of 97 to 101.7%.