1. Because interneurons of stratum pyramidale partly mediate the feed-forward inhibition of pyramidal cells, intracellular postsynaptic potentials (PSPs) evoked by activation of afferent fibers were examined in 32 nonpyramidal cells of stratum pyramidale of the CA1 region of rat hippocampal slices. 2. Electrical stimulation of stratum radiatum at the CA1-CA3 border elicited, in interneurons, PSPs that were composed of four components: a fast excitatory postsynaptic potential (EPSP), an early inhibitory postsynaptic potential (IPSPA), a late IPSPB, and in some cells a delayed, slower EPSP. These synaptic potentials summated and elicited single action potentials in 57% of cells (17/30) and burst of action potentials (2-10) in the remaining 43%. 3. The fast EPSP was observed in all cells, and the mean stimulation intensity at its threshold was 53.4 microA. Its amplitude increased with membrane hyperpolarization, and it was associated with a 45.4% decrease in cellular input resistance. The fast EPSP always elicited an action potential at short latencies (3.6-6.4 ms poststimulation). It was reversibly reduced by 6-cyano-7-nitroquinoxaline-2,3- dione (CNQX), a blocker of non-N-methyl-D-aspartate (non-NMDA) excitatory amino acid receptors. 4. The IPSPA was observed in 28/32 cells, and the mean intensity of stimulation was 57.6 microA at its threshold. The mean latency of its peak amplitude was 17.4 ms. The mean equilibrium potential (Erev) was -72.8 mV, and it was associated with a 38.9% decrease in cellular input resistance. IPSPA was blocked by the GABAA antagonist bicuculline. 5. The IPSPB was seen in 29/32 cells, and the mean intensity of stimulation at its threshold was 80.3 microA. Its latency to peak was 130.6 ms, its Erev was -107.6 mV, and it was associated with a small (7.6%) decrease in cellular input resistance. IPSPB was blocked by the GABAB antagonist phaclofen. 6. In 11/32 cells a slower EPSP was also observed. Its mean latency to peak was 53.3 ms, and the mean intensity of stimulation at its threshold was 89.4 microA. In two cells its amplitude decreased with membrane hyperpolarization, and its was associated with a 6.8% increase in cellular input resistance. In 8 of 13 cells showing burst responses, this slow EPSP was present. 7. Both EPSPs and IPSPs were sensitive to repetitive stimulation. The amplitude of the fast EPSP was potentiated during paired-pulse stimulation at interstimulus intervals between 30 and 200 ms and occasionally depressed at intervals of 10-20 ms.(ABSTRACT TRUNCATED AT 400 WORDS)
Read full abstract