AbstractThe effects of pyrrole, anthraquinone‐2‐sulphonic acid (AQSA) and iron(III) chloride (FeCl3) concentrations, reaction time and temperature on the electrical conductivity of polypyrrole (PPy)—coated poly(ethylene terephthalate) (PET) fabrics were investigated. With an increase in both the AQSA and FeCl3 concentrations, resistivity decreased to a point beyond which higher concentrations led to increased surface resistivity. Erosion of the polymer coating, in dynamic synthesis from continual abrasion, manifested as an exponential increase in the resistance of the coated textile substrate. This was not encountered in static synthesis conditions. Temperature affected the degree of surface and bulk polymerisation. The effect of polymerisation temperature on conductivity was negligible. Conductive polymer coating on textiles through chemical polymerisation enabled a smooth coherent film to encase individual fibres, which did not affect the tactile properties of the host substrate. The optimum FeCl3/pyrrole and AQSA FeCl3/pyrrole molar ratios were found to be 2.22 and 0.40 respectively. Copyright © 2003 Society of Chemical Industry