In the aircraft industry, there is a shift towards more and all-electric power systems resulting in great research efforts on single components like batteries. At the same time there is an increasing need to investigate and evaluate the long-term behavior of the whole electric power system to ensure safe and sustainable aircraft operation. Focusing on this challenge, the objective of this article is to propose a framework for electric power system assessment in the early design stages. In particular, the focus is on identifying and handling uncertainties regarding failure behavior and degradation, both on the component and system level. The evaluation of different power system topologies is based on the integration of Model-Based Systems Engineering and robust design methods. In this context, another central aspect is the definition of system and component requirements derived from the flight mission profile. SysML diagrams are used to define use cases and possible system topologies. Sensitivity of degradation effects are evaluated using robust design methods. The application of the framework and these methods is illustrated using a short-range aircraft with an all-electric power system. The results highlight the applicability of the framework to cope with the uncertainties that occur in the early design stages and point out fields of further research.