Self-vibration systems using active materials generate sustained vibrations spontaneously through synergistic actions between internal structure and external environment. Therefore, the self-vibration systems have a wide application prospect in bionic design and soft robots. Inspired by the human left ventricle, a novel chaotic self-beating system modeled by an electrothermal responsive liquid crystal elastomer balloon is proposed. To study the self-beating characteristics of the liquid crystal elastomer left ventricle, a simplified theoretical framework is formed by combining the electric joule heat conduction model, the left ventricle circulatory system model and the dynamic principle. The numerical results show that the left ventricle has two typical self-beating modes: periodic beating and chaotic beating. The mechanisms of periodic beating and chaotic beating are elucidated by analyzing the balance between the work done by each force on the left ventricle. In addition, the effects of key system parameters on self-beating behavior are investigated in detail. This research will promote the application of chaotic dynamics in artificial hearts and medical devices, while providing a new perspective for the study of chaotic behavior and mechanism in biology.
Read full abstract