Capillary desaturation process was investigated as a function of wetting phase rheological signatures during the injection of Newtonian and non-Newtonian fluids. Two sets of two-phase imbibition flow experiments were conducted on a water-wet sandstone core sample using brine and viscoelastic polymer solutions. During the experiments, a high-resolution micro-computed tomography scanner was employed to directly map pore-level fluid occupancies within the pore space. The results of the experiments revealed that at a given capillary number, the viscoelastic polymer was more efficient than the brine in recovering the non-wetting oil phase. At low capillary numbers, this is attributed to the improved accessibility of the viscoelastic polymer solution to the entrance of pore elements, which suppressed snap-off events and allowed more piston-like and cooperative pore-body filling events to contribute to oil displacement. For intermediate capillary numbers, the onset of elastic turbulence caused substantial desaturation, while at high capillary numbers, the superimposed effects of higher viscous and elastic forces further improved the mobilization of the trapped oil ganglia by the viscoelastic polymer. In the waterflood, however, the mobilization of oil globules was the governing recovery mechanism, and the desaturation process commenced only when the capillary number reached a threshold value. These observations were corroborated with the pore-level fluid occupancy maps produced for the brine and viscoelastic polymer solutions during the experiments. Furthermore, at the intermediate and high capillary numbers, the force balance and pore-fluid occupancies suggested different flow regimes for the non-Newtonian viscoelastic polymer. These regions are categorized in this study as elastic-capillary- and viscoelastic-dominated flow regimes, different from viscous-capillary flow conditions that are dominant during the flow of Newtonian fluids. Moreover, we have identified novel previously unreported pore-scale displacement events that take place during the flow of viscoelastic fluids in a natural heterogeneous porous medium. These events, including coalescence, fragmentation, and re-entrapment of oil ganglia, occurred before the threshold of oil mobilization was reached under the elastic-capillary-dominated flow regime. In addition, we present evidence for lubrication effects at the pore level due to the elastic properties of the polymer solution. Furthermore, a comparison of capillary desaturation curves generated for the Newtonian brine and non-Newtonian viscoelastic polymer revealed that the desaturation process was more significant for the viscoelastic polymer than for the brine. Finally, the analysis of trapped oil clusters showed that the ganglion size distribution depends on both the capillary number and the rheological properties of fluids.
Read full abstract