SUMMARY The fine-scale fractures within strike-slip faults substantially impact the flowing capacity. However, effective methods for their characterization are still lacking, making it challenging to predict hydrocarbon accumulation patterns. In this study, we conducted microscopic statistics, ultrasonic experiments and theoretical modelling to analyse the fracture density and elastic characteristics within the strike-slip fault and investigated the impact of stress. Our findings reveal that the fracture density in the fault core is 3–4 times higher than that in the damage zone, and the acoustic velocity is 13–18 per cent lower under atmospheric pressure. With the rising confining pressure, the fracture density initially decreases rapidly and then slowly, while the acoustic velocity follows the same increasing trend. The gradually slowing trend indicates that the majority of fractures close within the range of 0–20 MPa. Moreover, the stress sensitivity of the bulk modulus is higher than that of the shear modulus. The stress sensitivity is higher in the fault core than in the damage zone, which correlates strongly with the variation in fracture density. These indicate that the stress sensitivity in the fault-controlled rock is attributed to stress-induced fracture deformation, predominantly manifested as volumetric compression deformation. During the geological evolution, differences in tectonic faulting, fluid filling and compaction within the fault zone contribute to present heterogeneity in fracture density. Finally, our research demonstrates a strong correlation between theoretical prediction results and underground logging, drilling and core data. These findings can help predict the underground fracture distribution and elastic response of carbonate reservoirs controlled by strike-slip faults.
Read full abstract