Structural and crack parameters in a continuous mass model are identified using Observer Kalman filter Identification (OKID) and Eigen Realization Algorithm (ERA). Markov parameters are extracted from the input and out responses from which the state space model of the structural system is determined using Hankel matrix and singular value decomposition by Eigen Realization algorithm. The structural parameters are identified from the state space model. This method is applied to a lumped mass system and a cantilever which are excited with a harmonic excitation at its free end and the acceleration responses at all nodes are measured. The stiffness and damping parameters are identified from the extracted matrices using Newton-Raphson method on the structure. Later, cracks are introduced in the cantilever and all structural parameters are assumed as known priori, the unknown crack parameters such as normalized crack depth and its location are identified using OKID/ERA. The parameters extracted by using this algorithm are compared with other structural identification methods available in the literature. The main advantage of this algorithm is good accuracy of identified structural parameters.
Read full abstract