Aedes aegypti mosquitoes are well adapted to dry climates and can retain their eggs for extended periods in the absence of suitable habitat. Wolbachia strains transferred from other insects to mosquitoes can be released to combat dengue transmission by blocking virus replication and spreading through populations, but host fitness costs imposed by Wolbachia, particularly under some environments, can impede spread. We, therefore, assessed the impact of two Wolbachia strains being released for dengue control (wAlbB and wMelM) on fecundity and egg viability following extended egg retention (up to 24 days) under laboratory conditions. Egg viability following retention decreased to a greater extent in females carrying wMelM compared to uninfected or wAlbB females. Fertility fully recovered in uninfected females following a second blood meal after laying retained eggs, while wMelM females experienced only partial recovery. Effects of wMelM on egg retention were similar regardless of whether females were crossed to uninfected or wMelM males, suggesting that fitness costs were triggered by Wolbachia presence in females. The fecundity and hatch proportions of eggs of wMelM females declined with age, regardless of whether females used stored sperm or were recently inseminated. Costs of some Wolbachia strains during egg retention may affect the invasion and persistence of Wolbachia in release sites where larval habitats are scarce and/or intermittent.IMPORTANCEWolbachia mosquito releases are expanding around the world with substantial impacts on dengue transmission. Releases have succeeded in many locations, but the establishment of Wolbachia has been challenging in some environments, and the factors contributing to this outcome remain unresolved. Here, we explore the effects of Wolbachia on a novel trait, egg retention, which is likely to be important for the persistence of mosquito populations in locations with intermittent rainfall. We find substantial impacts of the Wolbachia strain wMelM on the quality of retained eggs but not the wAlbB strain. This cost is driven by the Wolbachia infection status of the female and can partially recover following a second blood meal. The results of our study may help to explain the difficulty in establishing Wolbachia strains at some field release sites and emphasize the need to characterize Wolbachia phenotypes across a variety of traits and strains.
Read full abstract