The lanthanide series elements are transition metals used as critical components of electronics, as well as rechargeable batteries, fertilizers, antimicrobials, contrast agents for medical imaging, and diesel fuel additives. With the surge in their utilization, lanthanide metals are being found more in our environment. However, little is known about the health effects associated with lanthanide exposure. Epidemiological studies as well as studies performed in rodents exposed to lanthanum (La) suggest neurological damage, learning and memory impairment, and disruption of neurotransmitter signaling, particularly in serotonin and dopamine pathways. Unfortunately, little is known about the neurological effects of heavier lanthanides. As dysfunctions of serotonergic and dopaminergic signaling are implicated in multiple neurological conditions, including Parkinson's disease, depression, generalized anxiety disorder, and post-traumatic stress disorder, it is of utmost importance to determine the effects of La and other lanthanides on these neurotransmitter systems. We therefore hypothesized that early-life exposure of light [La (III) or cerium (Ce (III))] or heavy [erbium (Er (III)) or ytterbium (Yb (III))] lanthanides in Caenorhabditis elegans could cause dysregulation of serotonergic and dopaminergic signaling upon adulthood. Serotonergic signaling was assessed by measuring pharyngeal pump rate, crawl-to-swim transition, as well as egg-laying behaviors. Dopaminergic signaling was assessed by measuring locomotor rate and egg-laying and swim-to-crawl transition behaviors. Treatment with La (III), Ce (III), Er (III), or Yb (III) caused deficits in serotonergic or dopaminergic signaling in all assays, suggesting both the heavy and light lanthanides disrupt these neurotransmitter systems. Concomitant with dysregulation of neurotransmission, all four lanthanides increased reactive oxygen species (ROS) generation and decreased glutathione and ATP levels. This suggests increased oxidative stress, which is a known modifier of neurotransmission. Altogether, our data suggest that both heavy and light lanthanide series elements disrupt serotonergic and dopaminergic signaling and may affect the development or pharmacological management of related neurological conditions.
Read full abstract