Efimov physics in the vicinity of two overlapping narrow Feshbach resonances can be explored within a framework of a three-channel model where a non-interacting open channel is coupled to two closed molecular channels. Here, we determine how it compares to the extended two-channel model, which includes an open channel with finite background scattering and a single molecular channel. We identify the parameter range in which the three-channel model surpasses the extended two-channel model. Furthermore, the three-channel model is extended to include background scattering, and then both models are applied to the experimentally relevant system of bosonic lithium atoms polarized on two different energy levels, with an isolated and two overlapping narrow Feshbach resonances, respectively. We confirm, in agreement with previous studies, that being small, the background scattering length in lithium has a negligible effect on the Efimov features in the case of isolated resonance. However, in the case of overlapping Feshbach resonances, the inclusion of background scattering improves the performance of the theory with respect to the experimentally measured position of the Efimov resonance.