Designing robust, efficient and inexpensive trifunctional electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is significant for rechargeable zinc-air batteries and water-splitting devices. To this end, constructing heterogenous structures based on transition metals stands out as an effective strategy. Herein, a dual-phase Co9S8-CoMo2S4 heterostructure grown on porous N, S-codoped carbon substrate (Co9S8-CoMo2S4/NSC) via a one-pot synthesis is investigated as the trifunctional ORR/OER/HER electrocatalyst. The optimized Co9S8-CoMo2S4/NSC2 exhibits that ORR has a half-wave potential of 0.86 V (vs. RHE) and the overpotentials at 10 mA cm-2 for OER and HER are 280 and 89 mV, respectively, superior to most transition-metal based trifunctional electrocatalysts reported to date. The Co9S8-CoMo2S4/NSC2-based zinc-air battery (ZAB) has a high open-circuit voltage (1.41 V), large capacity (804 mAh g-1) and highly stable cyclability (97 h at 10 mA cm-2). In addition, the prepared Co9S8-CoMo2S4/NSC2-based ZAB in series can self-drive the corresponding water-splitting device. The dual-phase Co9S8-CoMo2S4 heterostructure provides not only multi-type active sites to drive the ORR, OER and HER, but also high-speed charge transfer channels between two phases to improve the synergistic effect and reaction kinetics.
Read full abstract