Considerable technological progress has been made in ship handling and mooring in recent years, especially progress generated by the needs imposed by the introduction of ever larger ships. These advancements exploit the economic scale and environmental efficiency of larger vessels, but also present unique challenges, particularly in narrow waterways and harbour approaches. Precise navigation in these environments requires highly accurate hydrographic measurements, high-quality electronic charts, and advanced navigation systems, such as modern electronic chart display and information systems (ECDIS). Safe and efficient port operations also depend on the optimised allocation of port resources and comprehensive queuing strategies. Modern ships are increasingly susceptible to interference with Global Navigation Satellite Systems (GNSS) and Automatic Identification Systems (AIS), necessitating the development of resilient technologies and procedures to ensure navigational safety. In addition, climate change is exacerbating the challenges of ship handling in ports, as larger vessels are particularly vulnerable to sudden gusts of wind and have difficulty maintaining their position in the quay in strong crosswinds. Training and simulation are crucial to overcoming these challenges. Ship-handling simulators are invaluable for training purposes, but development is still needed to accurately simulate tilt and lean effects, especially when ships are sailing in narrow channels with following currents and changing winds. Improving the accuracy of these simulators will improve the preparation of seafarers for real-life conditions and ultimately contribute to safer and more efficient ship operations.
Read full abstract