Due to its serious hazards to human health and the environment, the deep removal of sulfur dioxide (SO2) has been of great significance. Thus, it is critical to develop high efficient SO2 capture and sequestration materials in gas purification process. Herein, we reported two novel prophyrin-based nitrogen-rich porous organic polymers (POPs), PrPOA-BP and PrPSN-BP, constructed through the simple catalyst-free condensation reaction. Owing to the strong affinity to SO2 from the conjugate-electron macrocycles structure of prophyrin and nitrogen-rich porous networks, also the high porous structure, these two POPs demonstrated excellent SO2 capture and separation performance with the adsorption uptakes up to 18.2 mmol g−1 (273 K, 1 bar), 13.3 mmol g−1 (298 K, 1 bar), 1.68 mmol g−1 (298 K, 0.01 bar). This very competitive performance has far exceeded most of the prior reported nanoporous materials. Meanwhile, the IAST selectivities of SO2/CO2 (10/90, v/v) could reach 107.8 and 72.0 at 273 and 298 K, 1 bar. This study represents a new type prophyrin-based POPs materials and confirms the intrinsic potential for high efficiency SO2 capture and sequestration.
Read full abstract