Vision Transformer (ViT) has prevailed among computer vision tasks for its powerful capability of image representation recently. Frustratingly, the manual design of efficient architectures for ViTs can be laborious, often involving repetitive trial and error processes. Furthermore, the exploration of lightweight ViTs remains limited, resulting in inferior performance compared to convolutional neural networks. To tackle these challenges, we propose Adaptive Search for Broad attention based Vision Transformers, called ASB, which automates the design of efficient ViT architectures by utilizing the broad search space and an adaptive evolutionary algorithm. The broad search space facilitates the exploration of a novel connection paradigm, enabling more comprehensive integration of attention information to improve ViT performance. Additionally, an efficient adaptive evolutionary algorithm is developed to efficiently explore architectures by dynamically learning the probability distribution of candidate operators. Our experimental results demonstrate that the adaptive evolution in ASB efficiently learns excellent lightweight models, achieving a 55% improvement in convergence speed over traditional evolutionary algorithms. Moreover, the effectiveness of ASB is validated across several visual tasks. For instance, on ImageNet classification, the searched model attains a performance of 77.8% with 6.5M parameters and outperforms state-of-the-art models, including EfficientNet and EfficientViT networks. On mobile COCO panoptic segmentation, our approach delivers 43.7% PQ. On mobile ADE20K semantic segmentation, our method attains 40.9% mIoU. The code and pre-trained models will be available soon in ASB-Code.