In practical engineering, especially in aeronautical engineering, the failure probability is extremely rare due to the incorporation of safety factors in the mechanical design phase. Consequently, a significant challenge is to assess the reliability of mechanical products with implicit functions and rare failure events. To address this issue, this work presents a parallel adaptive ensemble of metamodels (EM) coupled with hypersphere sampling strategy to improve the accuracy and efficiency of reliability analysis. The proposed method consists of three main features. First, a new heuristic ensemble strategy is proposed to provide a powerful and robust metamodel. Second, a n-dimensional uniform sampling technique with better space-filling ability is taken to improve efficiency, which leads to a decrease in the extensive sample size required to capture rare failure events. Third, an effective parallel enrichment strategy is developed by the proposed pseudo-improved U learning function. When parallel computation is possible, the proposed method can select a batch of informative updated points simultaneously to update the EM. Three numerical examples and a planar ten-bar structure are presented to demonstrate the accuracy and efficiency of the proposed method. This method is also applied to the reliability assessment of the aircraft lock mechanism.