Doxorubicin (DOX) is an anthracycline commonly used as a first-line treatment option for various malignancies, either as a stand-alone treatment or in combination with other chemotherapeutic agents. However, its efficacy in advanced cancer stages requires high doses, resulting in significant cytotoxicity to normal cells and severe side effects. Nanotechnology offers a promising strategy to mitigate these drawbacks through controlled drug release. In this study, bovine serum albumin nanoparticles (BSA-NPs) were synthesized via the desolvation method and successfully loaded with DOX (DOX-BSA-NPs). Characterization using dynamic light scattering, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-visible spectroscopy, and high-performance liquid chromatography confirmed efficient drug loading. In vitro studies demonstrated that DOX-BSA-NPs enabled sustained drug release and enhanced intracellular delivery. After treatment with DOX-BSA-NPs, ovarian cancer cells showed a twofold increase in cytotoxicity compared to free DOX. Scratch assays further revealed a significant reduction in cancer cell migration and invasion. Additionally, LDH assays and Annexin V-FITC flow cytometry indicated a shift toward apoptosis over necrosis, enhancing the anti-tumor efficacy of DOX. This was supported by increased reactive oxygen species production, upregulation of pro-apoptotic genes, downregulation of anti-apoptotic genes, and elevated caspase 3 and 7 activity, collectively promoting apoptosis. These findings underscore the potential of DOX-BSA-NPs as a superior alternative for targeted and controlled drug delivery, offering enhanced therapeutic efficacy and reduced side effects in ovarian cancer treatment.
Read full abstract