Pharmacogenomic (PGx) biomarkers integrated using machine learning can be embedded within the electronic health record (EHR) to provide clinicians with individualized predictions of drug treatment outcomes. Currently, however, drug alerts in the EHR are largely generic (not patient-specific) and contribute to increased clinician stress and burnout. Improving the usability of PGx alerts is an urgent need. Therefore, this work aimed to identify principles for optimal PGx alert design through a health-system-wide, mixed-methods study. Clinicians representing multiple practices and care settings (N = 1062) in urban, rural, and underserved regions were invited to complete an electronic survey comparing the usability of three drug alerts for citalopram, as a case study. Alert 1 contained a generic warning of pharmacogenomic effects on citalopram metabolism. Alerts 2 and 3 provided patient-specific predictions of citalopram efficacy with varying depth of information. Primary outcomes included the System's Usability Scale score (0-100 points) of each alert, the perceived impact of each alert on stress and decision-making, and clinicians' suggestions for alert improvement. Secondary outcomes included the assessment of alert preference by clinician age, practice type, and geographic setting. Qualitative information was captured to provide context to quantitative information. The final cohort comprised 305 geographically and clinically diverse clinicians. A simplified, individualized alert (Alert 2) was perceived as beneficial for decision-making and stress compared with a more detailed version (Alert 3) and the generic alert (Alert 1) regardless of age, practice type, or geographic setting. Findings emphasize the need for clinician-guided design of PGx alerts in the era of digital medicine.
Read full abstract