The magnetohydrodynamic (MHD) flow of Casson nanofluid has several applications in engineering and medical processes. The present research work is performed to examine the unsteady viscous dissipative and radiative flow of a Casson nanofluid over a stretching sheet under the influence of a transverse magnetic field with a view to highlight the impact of Hall current. The mathematical model comprising of nonlinear coupled PDE is transformed into a set of coupled ODEs using appropriate similarity transformation. The reduced mathematical model in a similar form is then solved by adopting the successive linearization method (SLM). The residual analysis is used to validate the solutions. A parametric study is performed to inquire about the impacts of Hall current, nonlinear thermal radiation, viscous dissipation, and other pertinent flow parameters such as temperature ratio, Brownian movement, thermophoresis on the nanofluid velocities, temperature, and concentration. The effects of pertinent flow parameters are also examined on the skin-friction coefficients, Nusselt number, and Sherwood number. A quadratic regression analysis is presented to estimate the skin-friction coefficient and Nusselt number for different values of effecting parameters. Results reveal that the increasing values of Casson parameter decrease the fluid velocity and temperature, whereas a converse trend is detected in concentration profile, rate of heat transfer and mass transfer.
Read full abstract