The effects of neutron-induced damage on the ferroelectric properties of thin film lead zirconate titanate (PZT) were investigated. Two sets of PbZr0.52Ti0.48O3 films of varying initial quality were irradiated in a research nuclear reactor up to a maximum 1 MeV equivalent neutron fluence of (5.16 ± 0.03) × 1015 cm−2. Changes in domain wall mobility and reversibility were characterized by polarization-electric field measurements, Rayleigh analysis, and analysis of first order reversal curves (FORC). With increasing fluence, extrinsic contributions to the small-signal permittivity diminished. Additionally, redistribution of irreversible hysterons towards higher coercive fields was observed accompanied by the formation of a secondary hysteron peak following exposure to high fluence levels. The changes are attributed to the radiation-induced formation of defect dipoles and other charged defects, which serve as effective domain wall pinning sites. Differences in damage accumulation rates with initial film quality were observed between the film sets suggesting a dominance of pre-irradiation microstructure on changes in macroscopic switching behavior.
Read full abstract