This study compared the three most common types of tofu (soybean curd), which were prepared by using magnesium chloride (MgCl2 tofu), calcium sulfate (CaSO4 tofu), and glucono-δ-lactone (GDL tofu) coagulants. The results showed that GDL tofu had a higher water holding capacity than MgCl2 tofu and CaSO4 tofu, which was attributed to its high surface hydrophobicity and disulfide bond content. GDL tofu possessed the lowest firmness, gumminess, and chewiness, along with a uniform network structure and a thin protein matrix. In contrast, MgCl2 tofu exhibited an inhomogeneous network structure with a thick protein matrix. Combining the results of protein hydrolysis degree, SDS-PAGE, and free amino acids during in vitro digestion, it was indicated that the degree of protein digestion in GDL tofu was the highest. After intestinal digestion, GDL tofu had the highest total phenolic content, ferric reducing antioxidant power, and DPPH value. These results demonstrated the superior protein digestibility and antioxidant property of GDL tofu during in vitro digestion due to its structural characteristics that facilitate enzyme diffusion in the matrix. The findings offer insight into the protein digestibility and antioxidant properties of different types of tofu during digestion from structural characteristic perspective and valuable reference information for consumer dietary nutrition.