Appropriate capillary effects are beneficial for controlling the wet powder performance and agglomerate formation. As water content rises, the funicular regime supplants the pendular regime as the predominant state in wet granular media. The displacement of grains leading to the stretching of funicular liquid bridges until rupture is an interesting and common phenomenon. Utilizing Surface Evolver software (an energy minimization approach), this work develops an efficient and accurate numerical model to describe liquid interactions among three spherical grains. The effects of liquid volume, contact angle, grain size ratio, grain-pair gap, and separation distance on the capillary forces and rupture distances are investigated. Notably, we present a modified closed-form equation for predicting the rupture distance of funicular bridges between three grains, which reflects the coupled effects of the contact angle, grain size, and liquid volume on rupture distance. This present study provides insights for incorporating capillary effects into mechanical models relying on microassembly composed of several grains in bidisperse particulate systems. Additionally, the numerical findings confirm some findings regarding the splitting of funicular bridges.