Direct growth of large-area uniform graphene films on insulating materials could facilitate the applications of graphene in optoelectronic devices. The ultrafast photocarrier relaxation and saturable absorption of direct chemical vapor deposition-grown graphene glasses, with lots of defects, are studied by using femtosecond time-resolved pump–probe and Z-scan techniques at 800 nm. We find that both the relaxation times associated with hot carrier cooling and the hot phonon effect are greatly suppressed in these defect-rich graphene glasses, which further leads to the increase of both saturation intensity and anisotropy in transient optical response for graphene glasses as compared with defect-free graphene. And, both the suppression effect and saturation intensity increase with the thickness of graphene film. The dominance of defect-assisted carrier-acoustic phonon scattering (i.e., supercollision, the collision of a carrier with both an acoustic phonon and defects) in the cooling process of hot carriers is responsible for the suppression of relaxation time.
Read full abstract