To investigate the effect of honokiol (HON) and the role of high-mobility group protein B1 (HMGB1) on the pathogenesis of severe acute pancreatitis (SAP). Thirty mice were numbered according to weight, and randomly divided into 5 groups using a random number table, including control, SAP, SAP and normal saline (SAP+NS), SAP and ethyl pyruvate (SAP+EP), or SAP+HON groups, 6 mice in each group. Samples of pancreas, intestine, and blood were collected 12 h after SAP model induction for examination of pathologic changes, immune function alterations by enzyme linked immunosorbent assay (ELISA), and Western blot. In vitro experiments, macrophages were divided into 5 groups, the control, lipopolysaccharide (LPS), LPS+DMSO (DMSO), LPS+anti-HMGB1 monoclonal antibody (mAb), and LPS+ HON groups. The tight connection level was determined by transmission electron microscopy and fluorescein isothiocyanate-labeled. The location and acetylation of HMGB1 were measured by Western blot. Finally, pyridone 6 and silencing signal transducer and activator of the transcription 1 (siSTAT1) combined with honokiol were added to determine whether the Janus kinase (JAK)/ STAT1 participated in the regulation of honokiol on HMGB1. The protein expression levels of HMGB1, JAK, and STAT1 were detected using Western blot. Mice with SAP had inflammatory injury in the pancreas, bleeding of intestinal tissues, and cells with disrupted histology. Mice in the SAP+HON group had significantly fewer pathological changes. Mice with SAP also had significant increases in the serum levels of amylase, lipase, HMGB1, tumor necrosis factor- α, interleukin-6, diamine oxidase, endotoxin-1, and procalcitonin. Mice in the SAP+HON group did not show these abnormalities (P<0.01). Studies of Caco-2 cells indicated that LPS increased the levels of occludin and claudin-1 as well as tight junction permeability, decreased the levels of junctional adhesion molecule C, and elevated intercellular permeability (P<0.01). HON treatment blocked these effects. Studies of macrophages indicated that LPS led to low nuclear levels of HMGB1, however, HON treatment increased the nuclear level of HMGB1 (P<0.01). HON treatment also inhibited the expressions of JAK1, JAK2, and STAT1 (P<0.01) and increased the acetylation of HMGB1 (P<0.05). HON prevented intestinal barrier dysfunction in SAP by inhibiting HMGB1 acetylation and JAK/STAT1 pathway.