Biosolids containing per- and polyfluoroalkyl substances (PFAS) could contaminate the receiving environments once they are land applied. In this study, we evaluated the feasibility of controlling the bioavailability of PFAS in biosolids to timothy-grass through stabilization or mobilization approaches. Stabilization was accomplished by adding a sorbent (i.e. granular activated carbon (GAC), RemBind, biochar) to biosolids, while mobilization was achieved by adding a surfactant, sodium dodecyl sulphate (SDS), to biosolids. The results showed that the ΣPFAS concentration in grass shoots grown in biosolids amended soil treated by GAC or RemBind at 2% was only 2.77% and 3.35% of the ΣPFAS concentration detected in shoots grown in biosolids amended soil without a sorbent, respectively, indicating the effectiveness of GAC and RemBind for stabilizing PFAS and reduce their bioavailability. On the other hand, mobilization by adding SDS to biosolids at a dose range of 10–100 mg/kg significantly increased the plant uptake of ΣPFAS by 15.48%–108.57%. Thus, mobilization by adding SDS could be a valuable approach for enhancing the PFAS removal if phytoremediation is applied. Moreover, higher rate of PFAS uptake took place after grass cutting was observed in this study. Thus, proper mowing and regrowth of timothy-grass could lead to efficient and cost-effective removal of PFAS from biosolids amended soil through phytoremediation and leave the site clean to be used for other purposes.
Read full abstract