Glipizide is a second-generation sulfonylurea antidiabetic drug. It is principally metabolized to inactive metabolites by genetically polymorphic CYP2C9 enzyme. In this study, we investigated the effects of CYP2C9*3 and *13 variant alleles on the pharmacokinetics and pharmacodynamics of glipizide. Twenty-four healthyKorean volunteers (11 subjects with CYP2C9*1/*1, 8 subjects with CYP2C9*1/*3, and 5 subjects with CYP2C9*1/*13) were recruited for this study. They were administered a single oral dose of glipizide 5mg. The plasma concentration of glipizide was quantified for pharmacokinetic analysis and plasma glucose and insulin concentrations were measured as pharmacodynamic parameters. The results represented that CYP2C9*3 and *13 alleles significantly affected the pharmacokinetics of glipizide. In subjects with CYP2C9*1/*3 and CYP2C9*1/*13 genotypes, the mean AUC0-∞ were increased by 44.8% and 58.2%, respectively (both P < 0.001), compared to those of subjects with CYP2C9*1/*1 genotype, while effects of glipizide on plasma glucose and insulin levels were not significantly different between CYP2C9 genotype groups. In conclusion, individuals carrying thedefective CYP2C9*3 and CYP2C9*13 alleles have markedly elevated plasma concentrations of glipizide compared with CYP2C9*1/*1 wild-type.