In fish, increasing the crude lipid level of feed can save protein and improve feed utilization. Mirror carp (Cyprinus carpio) is one of the most widely farmed fish species in the world. In this study, mirror carp larvae were fed isonitrogenous diets with different lipid levels (3%, 5%, 7%, 9%, 11%, and 13%). The rearing trial lasted for eight weeks. The results revealed that when the fat content was 9%, the AWGR, WGR, and FCR were highest, whereas FCR was lowest. The AWGR was correlated with the dietary lipid level, and the regression equation was y = -2.312x2 + 45.01x + 214.49. Compared with those in the control group, the T-CHO and TG contents were significantly greater in the 13% lipid content groups and significantly lower in the 9% lipid content groups (p < 0.05). In terms of muscle quality, the contents of MUFAs, PUFAs, and DHA + EPA were significantly greater than those in the other experimental groups (p < 0.05). Oil red O staining revealed a lipid content of 13% with severe fat deposition. In addition, the results of the analysis of antioxidant enzyme activity revealed that the activities of GSH, CAT and T-AOC were significantly greater at the 9% lipid content, and that the MDA content was significantly greater at the 13% lipid content (p < 0.05). Similarly, the mRNA levels of GH, IGF-I, FAS, and LPL were significantly highest at a lipid level of 9% (p < 0.05). The above results revealed that the optimal dietary lipid requirement for the fast growth of mirror carp (6.86 ± 0.95 g) was 9.74% on the basis of nonlinear regression analysis of the AWGR. The dietary lipid level (9%) improved the growth, stress resistance, and lipid utilization of mirror carp to a certain extent.
Read full abstract