Cholinergic projections have been shown to interact with estrogens in ways that influence synaptic plasticity and cognitive performance. The mechanisms are not well understood. The goal of this study was to investigate whether cholinergic projections influence brain estrogen production by affecting aromatase (ARO), or influence estrogen signaling by affecting estrogen receptor expression. In the first experiment, ovariectomized rats received intraseptal injection of the selective immunotoxin 192IgG-saporin to destroy cholinergic inputs to the hippocampus. In the second experiment ovariectomized rats received daily intraperitoneal injections of the cholinesterase inhibitors donepezil or galantamine for 1 week. ARO activity and relative levels of ARO, ERα, ERß, and GPR30 mRNAs were quantified in the hippocampus, frontal cortex, amygdala and preoptic area. Results show that the cholinergic lesions effectively removed cholinergic inputs to the hippocampus, but had no significant effect on ARO or on relative levels of ER mRNAs. Likewise, injections of the cholinesterase inhibitors had no effect on ARO or ER expression in most regions of the brain. This suggests that effects of cholinergic inputs on synaptic plasticity and neuronal function are not mediated by effects on local estrogen production or ER expression. One exception was the amygdala where treating with galantamine was associated with a significant increase in ARO activity. The amygdala is a key structure involved in registering fear and anxiety. Hence this finding may be clinically relevant to elderly patients who are treated for memory impairment and who also struggle with fear and anxiety disorders.
Read full abstract