The simultaneous presence of microplastics (MPs) and cadmium (Cd) in soil environments has raised concerns regarding their potential interactive effects on soil-plant ecosystems. This study explores how polyethylene (PE) at concentrations of 0.5 % (w/w), 1 % (w/w), and 2 % (w/w), and Cd at concentrations of 3 mg kg−1 and 12 mg kg−1, either alone or combined, impact soil physicochemical properties, microbial community structures, and bok choy growth through a 40-day pot experiment. Our findings reveal that the addition of 2 % (w/w) PE significantly increased soil organic carbon (SOC). However, when 2 % PE coexisted with Cd, SOC levels decreased, potentially due to a reduction in enzyme activity (β-1,4-glucosidase). PE increased the proportion of 1–2 mm soil aggregates, while the coexistence of 2 % PE and Cd significantly increased the content of soil aggregates larger than 2 mm. The coexistence of PE and Cd increased available potassium (AK) in the soil by approximately 13 % to 41 %. Regarding bok choy growth, the aboveground biomass under 2 % PE was approximately 210 % of that under 0.5 % PE, possibly because of the enhancement in soil nutrients. The presence of Cd, however, reduced the chlorophyll content of bok choy by approximately 18 % to 34 %. Notably, the coexistence of high PE concentration (2 % w/w) and low Cd concentration (3 mg kg−1) resulted in the highest aboveground biomass among all coexistence treatments. Furthermore, the addition of PE and Cd significantly altered the structure of soil bacterial and fungal communities, with fungi showing a greater response. Bacteria were significantly associated with soil inorganic N content and plant growth. This study provides new insights into the interactions of microplastics and Cd within microbial-soil-plant systems.
Read full abstract