Background: Over the past decade, saliva-based liquid biopsies have emerged as promising tools for the early diagnosis, prognosis, and monitoring of cancer, particularly in high-risk populations. However, challenges persist because of low concentrations and variable modifications of biomarkers linked to tumor development when compared to normal salivary components. Methods: This study explores the application of differential scanning calorimetry (DSC)-based thermal liquid biopsy (TLB) for analyzing saliva and blood plasma samples from head and neck cancer (HNC) patients. Results: Our research identified an effective saliva processing method via high-speed centrifugation and ultrafiltration, resulting in reliable TLB data. Notably, we recorded unique TLB profiles for saliva from 48 HNC patients and 21 controls, revealing distinct differences in thermal transition features that corresponded to salivary protein denaturation. These results indicated the potential of saliva TLB profiles in differentiating healthy individuals from HNC patients and identifying tumor characteristics. In contrast, TLB profiles for blood plasma samples exhibited smaller differences between HNC patients and had less utility for differentiation within HNC. Conclusions: Our findings support the feasibility of saliva-based TLB for HNC diagnostics, with further refinement in sample collection and the incorporation of additional patient variables anticipated to enhance accuracy, ultimately advancing non-invasive diagnostic strategies for HNC detection and monitoring.
Read full abstract