AbstractMixed alkaline earth (MgO, CaO) aluminosilicate glass fibers (MCAS) with and without boron are commonly used as reinforcements in plastic composites, and the fundamental understanding of the thermal and mechanical properties is essential to the design of new glass compositions to satisfy the growing demands in applications from renewable energy to lightweight structural components. In this work, a series of Li2O containing low‐boron MCAS fiber glasses have been studied by using molecular dynamic (MD) simulations with recently developed effective partial charge composition dependent boron potentials. Structural characteristics, such as pair distribution function, bond angle distribution, and neutron/X‐ray diffraction structure factors, were calculated, as well as properties such as elastic moduli and vibrational density of states. The addition of Li2O was found to improve the elastic moduli of the fiber glasses in excellent agreement with experimental results we reported earlier. The simulation results showed that the weakened network connectivity and decrease of tri‐/bridging oxygen have positively affected the lowering of liquid temperature, owing to the transformation to more boron Q2 and silicon/aluminon Q3. It is found that higher oxygen packing density, coordinated aluminum/boron species such as [AlO5] and [BO4] units, larger‐membered oxide rings, and intensified connections of [AlOx] and [SiO4] are the main reasons that lead to improved mechanical properties. MD‐based quantitative structure–property relationship analyses were performed and showed excellent correlations to measured properties, indicating that it is a promising approach to understand glass properties and design new glass compositions for functional applications.
Read full abstract