Dryas octopetala var. asiatica, a dwarf shrub belonging to the Rosaceae family and native to Asia, exhibits notable plasticity in photosynthesis in response to temperature variations. However, the codon usage patterns and factors influencing them in the chloroplast genome of this species have not yet been documented. This study sequenced and assembled the complete genome of D. octopetala var. asiatica. The annotated genes in the chloroplast genome were analyzed for codon composition through multivariate statistical methods including a neutrality plot, a parity rule 2 (PR2) bias plot, and an effective number of codons (ENC) plot using CodonW 1.4.2 software. The results indicated that the mean GC content of 53 CDSs was 38.08%, with the average GC content at the third codon base position being 27.80%, suggesting a preference for A/U(T) at the third codon position in chloroplast genes. Additionally, the chloroplast genes exhibited a weak overall codon usage bias (CUB) based on ENC values and other indicators. Correlation analysis showed a significant negative correlation between ENC value and GC2, an extremely positive correlation with GC3, but no correlation with GC1 content. These findings highlight the importance of the codon composition at the third position in influencing codon usage bias. Furthermore, our analysis indicated that the CUB of the chloroplast genome of D. octopetala var. asiatica was primarily influenced by natural selection and other factors. Finally, this study identified UCA, CCU, GCU, AAU, GAU, and GGU as the optimal codons. These results offer a foundational understanding for genetic modification and evolutionary dynamics of the chloroplast genome of D. octopetala var. asiatica.