A cosmological observable measured in a range of redshifts can be used as a probe of a set of cosmological parameters. Given the cosmological observable and the cosmological parameter, there is an optimum range of redshifts where the observable can constrain the parameter in the most effective manner. For other redshift ranges the observable values may be degenerate with respect to the cosmological parameter values and thus inefficient in constraining the given parameter. These are blind redshift ranges. We determine the optimum and blind redshift ranges of basic cosmological observables with respect to three cosmological parameters: the matter density parameter ${\mathrm{\ensuremath{\Omega}}}_{m}$, the equation-of-state parameter $w$ (assumed constant), and a modified gravity parameter ${g}_{a}$ which parametrizes a possible evolution of the effective Newton's constant as ${G}_{\mathrm{eff}}(z)={G}_{N}(1+{g}_{a}(1\ensuremath{-}a{)}^{2}\ensuremath{-}{g}_{a}(1\ensuremath{-}a{)}^{4})$ (where $a=\frac{1}{1+z}$ is the scale factor and ${G}_{N}$ is Newton's constant of general relativity). We consider the following observables: the growth rate of matter density perturbations expressed through $f(z)$ and $f{\ensuremath{\sigma}}_{8}(z)$, the distance modulus $\ensuremath{\mu}(z)$, baryon acoustic oscillation observables ${D}_{V}(z)\ifmmode\times\else\texttimes\fi{}\frac{{r}_{s}^{\mathrm{fid}}}{{r}_{s}}$, $H\ifmmode\times\else\texttimes\fi{}\frac{{r}_{s}}{{r}_{s}^{\mathrm{fid}}}$ and ${D}_{A}\ifmmode\times\else\texttimes\fi{}\frac{{r}_{s}^{\mathrm{fid}}}{{r}_{s}}$, $H(z)$ measurements, and the gravitational wave luminosity distance. We introduce a new statistic ${S}_{P}^{O}(z)\ensuremath{\equiv}\frac{\mathrm{\ensuremath{\Delta}}O}{\mathrm{\ensuremath{\Delta}}P}(z)\ifmmode\cdot\else\textperiodcentered\fi{}{V}_{\mathrm{eff}}^{1/2}$, including the effective survey volume ${V}_{\mathrm{eff}}$, as a measure of the constraining power of a given observable $O$ with respect to a cosmological parameter $P$ as a function of redshift $z$. We find blind redshift spots ${z}_{b}$ (${S}_{P}^{O}({z}_{b})\ensuremath{\simeq}0$) and optimal redshift spots ${z}_{s}$ (${S}_{P}^{O}({z}_{s})\ensuremath{\simeq}\mathrm{max}$) for the above observables with respect to the parameters ${\mathrm{\ensuremath{\Omega}}}_{m}$, $w$, and ${g}_{a}$. For example, for $O=f{\ensuremath{\sigma}}_{8}$ and $P=({\mathrm{\ensuremath{\Omega}}}_{m},w,{g}_{a})$ we find blind spots at ${z}_{b}\ensuremath{\simeq}(1,2,2.7)$, respectively, and optimal (sweet) spots at ${z}_{s}=(0.5,0.8,1.2)$. Thus, probing higher redshifts may in some cases be less effective than probing lower redshifts with higher accuracy. These results may be helpful in the proper design of upcoming missions aimed at measuring cosmological observables in specific redshift ranges.
Read full abstract