Previous studies have shown that the visual word form area (VWFA) has structural and intrinsic functional connectivity with both language and attention networks. Nevertheless, it is still unclear how the functional connectivity pattern of the VWFA is regulated by processing demands induced by experimental tasks, and whether processing demands differentially regulate the posterior (VWFA-1) and anterior (VWFA-2) subregions of the VWFA. To address these questions, the present study adopted two tasks varying in processing demands (i.e., verbal and non-verbal tasks), and used generalized psychophysiological interaction (gPPI) and dynamic causal modeling (DCM) analyses to explore the task-dependent functional connectivity patterns of the two subregions of the VWFA. Activation analysis revealed that the VWFA-2 showed higher activation for the verbal task than the non-verbal task, while there were no activation differences in the VWFA-1 after controlling for the stimulus driven effects. Functional and effective connectivity analyses revealed that, for both VWFA-1 and VWFA-2, the verbal task enhanced connections from VWFAs to the ventral language regions (e.g., the left orbital frontal cortex), while the non-verbal task enhanced connections from VWFAs to the dorsal visuospatial regions (e.g., the left intraparietal sulcus). Results of the present study indicate that processing demands induced by tasks modulate both the local activity and functional connectivity patterns of the VWFA, providing new insights for understanding its domain-general function.
Read full abstract