AbstractUnderstanding the mechanisms underlying tri‐trophic interactions between insect herbivores, their host plants and natural enemies is an important aim in ecology. In the present study, the effect of urea fertilizer and vermicompost on a tri‐trophic level cascade, comprising safflower, Carthamus tinctorius, safflower aphid, Uroleucon carthami and its primary parasitoid wasp, Praon yomenae, was investigated. Vermicompost increased the number of leaves, leaf area, fresh weight, dry weight, the total number of aphids and reduced the number of winged aphids and aphid load (Aphid load = number of aphids / plant fresh weight). Only two variables, plant phenol content and relative water content, were not significantly affected by vermicompost. Urea fertilizer had no impact on all variables except a significant effect on plant height. In another experiment, the effect of urea fertilizer and vermicompost on the wasp parasitoid was studied. The number of parasitoid mummies, mummification time, developmental time, the number of emerged adults, sex ratio, percentage of parasitism and hind tibia length was measured. Vermicompost had no significant effect on any of the measured parameters, but urea fertilizer increased the hind tibia length of the parasitoid. Vermicompost increased plant growth parameters and had an indirect and inhibiting effect on the safflower aphid itself. There was evidence of a bottom‐up cascade to the third trophic level by adding fertilizers in this system: Urea fertilizer enhanced plant height but seemingly had no impact on the attacking herbivore. It is interesting that the effect of urea can be transferred to the third trophic level, that is parasitoid. This suggests that vermicompost could be used simultaneously with urea fertilizer, because urea fertilizer had a positive impact on the parasitoid and vermicompost had a positive impact on plant growth as well as the ability to reduce aphid load.
Read full abstract