Rechargeable nickel-zinc (Ni-Zn) batteries hold great promise for large-scale applications due to their relatively high voltage, cost-efficient zinc anode, and good safety. However, the commonly used cathode materials are susceptible to overcharging and experience irreversible capacity degradation, primarily as a result of low electrical conductivity and substantial limitations in volume-constrained proton diffusion. Here, we present a robust methodology for synthesizing hierarchical nickel-cobalt (Ni-Co) hydroxides characterized by hollow interiors and interconnected nanosheet shells with the help of in situ formed metal-organic frameworks (MOFs). The templating effect of the MOF induced the hierarchical structure, while the chemical etching of MOFs by Ni2+ ions resulted in a hollow structure, thereby enhancing the surface area. Theoretical calculations suggested that incorporation of cobalt reduces the band gap, thereby improving electronic conductivity, and lowered the deprotonation energy, which mitigated overcharge issues. These advantages conferred improved specific capacity, rate capability, and cyclic stability to the Ni-Co hydroxide. The Ni-Zn cell delivered specific energy values of 338 Wh kg-1 at 1.62 kW kg-1 and 142 Wh kg-1 at 29.89 kW kg-1. Our investigations undercoreed the critical role of MOFs as intermediates in the preparation of multi-component hydroxide and the construction of hiearchical structures to achieve superior performance.