A slip boundary has been shown to have a significant impact on flow past bluff bodies. In this work and using a circular cylinder as a model system, the effects of various slip configurations on the passing flow are investigated. A theoretical analysis using matched-asymptotic expansion is first performed in the small-Reynolds number regime following Stokes and Oseen. A slip boundary condition is shown to lead to only higher-order effects (~1/ln(Re)) on the resulting drag coefficient. For higher Reynolds numbers (100–500), the effects of five types of symmetric slip boundary conditions, namely, no slip, fore-side slip, aft-side slip, flank slip, and all slip on the flow field and pertinent parameters are investigated with numerical simulations. Detailed results on the flow structure and force distribution are presented. Flank slip is found to have the best effect for drag reduction with comparable coverage of slip area. For asymmetric slip distributions, torque and lift are found to generally occur.