Abstract Our understanding of large-scale magnetic fields in stellar radiative zones remains fragmented and incomplete. Such magnetic fields, which must be produced by some form of dynamo mechanism, are thought to dominate angular-momentum transport, making them crucial to stellar evolution. A major difficulty is the effect of stable stratification, which generally suppresses dynamo action. We explore the effects of stable stratification on mean-field dynamo theory with a particular focus on a non-helical large-scale dynamo (LSD) mechanism known as the magnetic shear-current effect. We find that the mechanism is robust to increasing stable stratification as long as the original requirements for its operation are met: a source of shear and non-helical magnetic fluctuations (e.g. from a small-scale dynamo). Both are plausibly sourced in the presence of differential rotation. Our idealized direct numerical simulations, supported by mean-field theory, demonstrate the generation of near equipartition large-scale toroidal fields. Additionally, a scan over magnetic Reynolds number shows no change in the growth or saturation of the LSD, providing good numerical evidence of a dynamo mechanism resilient to catastrophic quenching, which has been an issue for helical dynamos. These properties – the absence of catastrophic quenching and robustness to stable stratification – make the mechanism a plausible candidate for generating in situ large-scale magnetic fields in stellar radiative zones.
Read full abstract