PurposeHerringbone groove thrust bearings are typically used in high-speed, light-load applications, such as spindle motors for hard disk drives. In the past researches, the effect of shaft misalignment was little considered. This study aims to reveal effects of shaft misalignment on the microscopic flow regime in the water-lubricated herringbone groove thrust bearing.Design/methodology/approachThe liquid film in a thrust herringbone groove bearing was investigated by computational fluid dynamics. The effects of micro-grooves on the flow field were carefully explored. Two-dimensional liquid films at four different sites were examined for obtaining the rich flow field properties.FindingsThe distributions of pressure, temperature and water vapor volume fraction were obtained, the micro hydrodynamic effects were formed by the herringbone grooves and the effects of the shaft misalignment on lubrication and sealing performance could be found.Originality/valueThe influence of misalignment on the herringbone groove thrust bearing performance was investigated in detail. The obtained results could give the reference guideline for the bearing design.
Read full abstract