This study investigated the flexural performance of 10 reinforced concrete slabs rehabilitated using thin ultra-high-performance concrete (UHPC) bonded overlay. The performance was compared to two slabs repaired using latex-modified concrete (LMC) that is widely used for bridge deck rehabilitation. Test parameters included the overlay thickness (25, 38, and 50 mm), fiber volume (2% and 3.25%), and shrinkage mitigation methods for the UHPC. The overlay slab specimens were stored outdoor for 30 months before conducting the four-point bending test. Experimental results indicated that the overlay slabs exhibited flexural failure pattern with yield of reinforcing steel, concrete crushing of the reinforced concrete substrate, and multiple cracks in the overlay. The use of UHPC thin bonded overlay enhanced cracking load by 295%–395% and flexural capacity by 35%–75% compared to the LMC overlay slabs. The maximum crack width of UHPC overlay slabs at the stage of the yield of reinforcement was less than 0.1 mm compared to 0.25–0.3 mm for the LMC overlay slabs. No slip occurred at the interface between the UHPC overlay and substrate, whereas the slip initiated following LMC overlay cracking. The increase of overlay thickness from 25 to 50 mm and fiber volume from 2% to 3.25% enhanced the flexural load capacity of the UHPC overlay slabs by 30%–40% and 10%–25%, respectively. These two strategies also reduced crack opening and propagation before the yield of reinforcing steel. The use of pre-saturated lightweight sand and CaO-based expansive agent was effective in mitigating autogenous and drying shrinkage without significantly influencing the flexural capacity of UHPC overlay slab.